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N
ABSTRACT

There exists an infinite set of quadratic conserved quantities for linear quasi-geostrophic waves in horizontal
and vertical shear, the first two members of the set corresponding to the pseudomomentum and pseudo-energy
conservation laws that lead to the Rayleigh-Kuo (or Charney-Stern) and the Fjortoft stability criteria. This
infinite hierarchy of conservation laws follows from the conservation of the pseudomomentum in each eigenmode

of the shear flow.

1. Introduction

Consider the barotropic vorticity equation linearized
about a zonal flow # with absolute vorticity gradient

Y= ﬁ - ﬁyy:
§o=—ul—v¥x. (1)

Assume that the flow is confined to a reentrant channel
with ¥’ = 0 on the northern and southern walls. The
well-known conservation laws that lead to the Ray-
leigh-Kuo and Fjortoft stability criteria take the form

o [ Ty =0, @)

) f liy-"F%2 + (@ T)2)dy
=o [l TR-dw=0, @)

where e = (1> +0v'?)/2, an overbar refers to a zonal
average and the integral is over the channel. In writing
(2) and (3) we are assuming that the disturbance vor-
ticity vanishes wherever v = 0, so that the disturbance
can be thought of as being created by the meridional
displacement % = —{'/+. Since the first of these con-
servation laws (pseudomomentum conservation) is
known to be related to the translational invariance of
the basic state, and the second (pseudo-energy conser-
vation) to its time invariance, and since there are no
other obvious symmetries for arbitrary u, one is
tempted to conclude that there are no other similar
conservation laws to be found. (See Mcintyre and
Shepherd, 1987, for a recent discussion of the connec-
tion between these symmetries and conservation laws,
and the fact that the symmetries insure the existence
of nonlinear extensions of the linear conservation laws.)

In fact, (2) and (3) are the first two members of an
infinite hierarchy of conservation laws, the next mem-
ber being

a f [y Y2+ 'S +v922)dy=0.  (4)

Equation (4) can be confirmed directly by first noting
that the left-hand side equals

f [y~ §Uas’ + )+l + y)ldy. (5)

Defining £’ and x’ so that £ = ¢’ and x\ =y’ we
have

[ T@ v =-[ e EE-o
[wa@@wvon= [xaE

= "f X5k Xsoa T X =0, (7)

(6)

using the fact that x’, = O at the northern and southern
walls of the channel. The following more indirect proof
makes clear how (2), (3) and (4) are part of an infinite
hierarchy of conservation laws and how this hierarchy
is related to the fact that the pseudomomentum in each
eigenmode of the shear flow is conserved. The results
are easily extended to the quasi-geostrophic case.

2. The hierarchy of conservation laws

.Let ¢’ = ¢e** + cc and consider the eigenvalue

problem L. .
al+yy=ci (8)

In terms of the meridional particle displacements 7,
(8) can be written in the form

Ryfi=cyii; R=u+yV?3 9

where V2 is the inverse of the operator d,, — k2. Let
the modal decomposition of the disturbance #
= pe’*™ + cc be



2350

n= Zam()e " + Zbm,(e " + dm()e 7,
T j
(10)

where the first sum is over the neutral modes and the
second over the amplifying and decaying modes. One
should consider the first sum as including an integral
over the continuous spectrum. (For the following dis-
cussion, one can think of the continuous spectrum as
discretized by some finite-differencing of the original
equation.) Using the notation
{4, B} =fA*de 1
the total pseudomomentum in the wave field, which
is conserved according to (2), is proportional to M
= {n, yn}. As described in Held (1985), {n;, yn;} =0
unless ¢; = cf. '
Consider first the case in which there are no unstable
- modes, so that all eigenvalues c are real. In this case,
M = 3 m;, where

= la*{ni, yn:}. (12)

Each of the m; is conserved by the flow since the modal
amplitudes, g;, are constants. But from (9), for each
positive integer n,
{n,R"yn} = Za¥a;{n;, R"yn;}
i

=y ata;c{ni,yn;} = 2c’'m.
i

ij

(13)

Since the m; are conserved, the combination X,c/"m;
must also be conserved. Therefore, {5, R"yy} is con-
served for each n.

In the case when unstable modes are present, there
is also a contribution to the total pseudomomentum
from the product of each amphfymg mode with its
decaylng partner:

M=3m+2Re > m;

J

m;=bidf {nf,yn;}.  (14)

One can shon, however, that ]
{n, R"yn} = Etl ¢'m; + 2Re %} ¢'m;, _
which is again conserved. For n = 1;
{n, Ryn} = {n,(@y + vV >y)n} = f(lh? +9'02,

which reduces to the pseudo-energy conservation law
(3). Forn =

{n,R*yn} = {n, @y +yV2ay +ayV 2y
+ YV YV 2y} = f (@yn”+ 2095 + /2,

which is the conserved quantity in (4). The n = 3 con-
servation law involves such quantities as ¢'V "2y,
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One can obtain (2) from (3) by using Galilean in-
variance. Substituting # + A for # in (3) and requiring
that the same conservation law hold in the new refer-
ence frame, the term multiplying A must vanish, yield-
ing (2). In a similar way, one can obtain (2) and (3)
from the n = 2 conservation law (4). The substitution
of 4 + A for & now produces terms linear and quadratic
in A. The vanishing of the quadratic term yields (2)
and the vanishing of the linear term yields (3). In this
way, each member of this hierarchy of conservation
Jaws can be said to contain within itself all of the pre-
ceeding members of the hierarchy.

Equation (4) can be manipulated into the alternative
form

a, f (@Y1 C%/2 — 2de+ 697/21=0 (16)
by noting that
f Y =— f [Rite+ iy ?),/2]
=— f [2ite — i, %/2]. 17)

In this form, the signs of the different terms in the
conserved quantity become evident.

3. The quasi-geostrophic case

If no temperature gradient exists on the lower and
upper boundaries of the fluid, the conserved quantities
for quasi-geostrophic waves in horizontal and vertical
shear take precisely the same form as in the barotropic
case, with the mean potential vorticity gradient g, re-
placing v and the perturbation potential vorticity ¢’
replacing {’. Temperature gradients at the boundaries
can be incorporated in the usual way by including é-
function contributions in (iy and ¢'. In the case of a
lower boundary at z=0, ¢’ — ¢’ + .6(0+), and g, =
gy — €ii;5(0+), where ¢ = (N/f)2. For example, the n
= 2 conserved quantity becomes

[ [ @+ &g+ aa?pdyaz
—€ f (@222 — 'y, +uz‘l"2/2]z-0dya (18)

where p = exp(—z/H), in log( p) coordinates. Equation
(18) can also be written in a form analogous to (16):

f f [22q,n%/2 — 2ide+ By /2l pdydz
~ [ @rabecay, (19)

where the eddy energy density e now includes the
available potential as well as the kinetic energy.
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4. Concluding remarks

As an example of an application of the n = 2 con-
servation law, consider a barotropic flow in the absence
of rotation (8 = 0), for which (2), (3) and (17) yield
the conserved quantities

fV, f(ﬁV—e), and f(ﬁzV—Zﬁe), (20)

where V' = {"?/(2). Suppose the disturbance is initially
localized in a narrow region over which i and v have
negligible variation. If this disturbance remained lo-
calized and propagated into another region with a sub-
stantially different value of i, the quantities in (20)
could not be conserved simultaneously. Therefore, if
B = 0 it is impossible for a disturbance in a shear flow
to remain localized while moving into a region of dif-
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ferent . If 8 # 0, this is certainly possible; Rossby
wavepackets have just this property.

Analogous conservation laws can be obtained for
gravity waves in shear, but the expressions are suffi-
ciently complicated that they do not appear to be par-
ticularly useful. Also, it seems unlikely that any of the
new conservation laws have nonlinear extensions
analogous to those that exist for pseudomomentum
and pseudoenergy.
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